TLR4 Inactivation in Myeloid Cells Accelerates Bone Healing of a Calvarial Defect Model in Mice
نویسندگان
چکیده
BACKGROUND Toll-like receptor 4 (TLR4) has been implicated in inflammation-induced bone destruction in various chronic bone diseases; however, its direct influence on bone healing is not well understood. The authors' previous study showed accelerated bone healing with higher osteoclastogenesis gene expression in toll-like receptor 4 knockout mice (TLR4). This study aimed to further elucidate the underlying cellular mechanisms during fracture healing by generating a myeloid cell-specific toll-like receptor 4 knockout model (Lyz-TLR4 mice). METHODS Calvarial defects, 1.8 mm in diameter, were created in wild-type, TLR4, and Lyz-TLR4 mice. Bone healing was investigated using micro-computed tomography and histologic, histomorphometric, and immunohistochemistry analyses. Primary bone marrow-derived cells were also isolated from wild-type, TLR4, and Lyz-TLR4 mice to measure their osteoclast differentiation and resorption properties. RESULTS A similar faster bone healing response, with active intramembranous bone formation, intense osteopontin staining, and more osteoblast infiltration, was observed in TLR4 and Lyz-TLR4 mice. Tartrate-resistant acid phosphatase staining showed more osteoclast infiltration in Lyz-TLR4 mice than in wild-type mice at day 7. Primary bone marrow-derived cells isolated from TLR4 and Lyz-TLR4 mice presented enhanced osteoclastogenesis and resorption activity compared with those from wild-type mice. Comparable M0, M1, and M2 macrophage infiltration was found among all groups at days 1, 4, and 7. CONCLUSIONS This study revealed that inactivation of toll-like receptor 4 in myeloid cells enhanced osteoclastogenesis and accelerated healing response during skull repair. Together with the role of toll-like receptor 4 in inflammation-mediated bone destruction, it suggests that toll-like receptor 4 might regulate inflammation-induced osteoclastogenesis under different clinical settings.
منابع مشابه
Enhanced Calvarial Bone Healing in CD11c-TLR4−/− and MyD88−/− Mice
BACKGROUND Inflammation is integral to the injury response. The inflammatory response is essential to the host defense against infection and also to tissue regeneration and repair. Toll-like receptors (TLRs) are critical activators of the innate immune response and present attractive therapeutic targets for inflammation-modulated tissue regeneration. The authors' previous study showed that depl...
متن کاملAccelerated Calvarial Healing in Mice Lacking Toll-Like Receptor 4
The bone and immune systems are closely interconnected. The immediate inflammatory response after fracture is known to trigger a healing cascade which plays an important role in bone repair. Toll-like receptor 4 (TLR4) is a member of a highly conserved receptor family and is a critical activator of the innate immune response after tissue injury. TLR4 signaling has been shown to regulate the sys...
متن کاملEvaluation of the effects of autologous adipose derived mesenchymal stem cells in combination with polyacrylamide hydrogel and nanohydroxyapatite scaffolds on healing in rabbit critical-sized radial bone defect model
Objective: In this study, the bone regeneration ability of polyacrylamide hydrogel and nanohydroxyapatite scaffolds (PAAH/NHA) and stem cells derived from adipose tissue (ADSCs) in the healing of critical sized bone defects in rabbit radius were assessed. Animals and procedures: 12 New Zealand white male rabbits were divided into 3 groups. The rabbits were anesthetized and 15 mm bone def...
متن کاملExperimental study on healing of long bone defects treated with fibrin membrane enriched with platelet growth factors and periosteal mesenchymal stem cells in rabbit: radiographical and histopathological evaluations
The present study was designed to evaluate the effects of platelet growth factors and periosteal mesenchymal stem cells on bone healing process, radiographically. Forty male White New Zealand rabbits in five equal groups were used in this study. A 2 mm full thickness bone defect was made in left radial bone of each animal. In group A (control) the defect was left with no medical intervention. I...
متن کاملEffect of host sex and sex hormones on muscle-derived stem cell-mediated bone formation and defect healing.
Muscle-derived stem cells (MDSCs) are known to exhibit sexual dimorphism, by donor sex, of osteogenic, chondrogenic, and myogenic differentiation potential in vitro. Moreover, host sex differences in the myogenic capacity of MDSCs in vivo are also observed. This study investigated the role of host sex and host sex hormones in MDSC-mediated bone formation and healing. Using unaltered male, castr...
متن کامل